SCORPIO:

A 36-Core Research Chip
Demonstrating Snoopy Coherence
on a Scalable Mesh NoC
with In-Network Ordering

Bhavya Daya

Collaborators:

Chia-Hsin Chen
Suvinay Subramanian
Woo-Cheol Kwon
Sunghyun Park
Tushar Krishna
Jim Holt
Anantha Chandrakasan
Li-Shiuan Peh

Evolution of On-Chip Networks

Objectives

Develop a simple, scalable, and intuitive multicore processor

Focus on enabling snoopy coherence on a mesh interconnect

Processor Overview

IBM 45nm SOI, 143mm² 600M transistors

36 cores with total 4.5MB L2

6×6 mesh on-chip network supporting snoopy coherence

Dual channel DDR2 memory controllers

Tile Architecture

Core

- Freescale e200 z760n3
- In-order
- Dual-issue

Private L1 cache

- Split 16KB for Inst / Data
- 4-way set associative

Write-through

Back-invalidate

Private L2 cache

- 128KB
- 4-way set associative
- Inclusive
- MOSI Protocol

Globally Ordered Mesh Network

BHAVYA DAYA

Globally Ordered Mesh Network

BHAVYA DAYA

Decouple Ordering from Message Delivery

BHAVYA DAYA

Notifications

Bounded latency (≤ 12 cycle)

- Non-blocking
- 1 cycle / hop broadcast mesh

Notification bit-vector

- Dedicated 1 bit / tile
- Inject notification for each coherent request

35	_						1	•
0	0	0	0 0	0	000	1	0	0

Notifications

Bounded latency (≤ 12 cycle)

- Non-blocking
- 1 cycle / hop broadcast mesh

Notification bit-vector

- Dedicated 1 bit / tile
- Inject notification for each coherent request

35	34	33		15		2	1	0
0	0	0	• • •	0	000	1	0	0

Low cost

Only DFF + ORs

Main Network Router

Two Virtual Networks

- Globally Ordered Request (GO-REQ)
- Unordered Response (UO-RESP)

Optimizations

- Virtual Bypassing
- Broadcast Support
- VC Select Mechanism

Deadlock Avoidance

- XY Routing
- Separate virtual networks for requests and responses
- Reserved VC (rVC) for highest priority flit

Time Window

Determine *locally* the *global order* according to consistent ordering rule at all nodes

Journey of a Coherent Request

Journey of a Coherent Request

Journey of a Coherent Request

Architecture Analysis

Simulator	GEMS + GARNET		
Access times	L1 – 1 cycle; L2 – 10 cycles; DRAM 90 cycles		
LPD-D	Limited Pointer Distributed Directory		
HT-D	AMD HyperTransport (Distributed)		
SCORPIO-D	Snoopy Coherence: MOSI (Distributed)		

	LPD-D	HT-D	SCORPIO-D
What is tracked?	Few sharers	Presence of owner	Presence of owner
Ordering point	Directory	Directory	Network

Isolate

Storage overhead

Indirection latency

Normalized Runtime

Practical Network Design

Token Coherence (TokenB)

- T tokens for each block of shared memory
- T = # of processors

Area _∞ Number Overhead Cachelines

In-Network Snoop Ordering (INSO)

- Periodic expiration required
- Worsening ordering latency and network traffic with small expiration window

Timestamp Snooping (TS)

 Each request tagged with an ordering time (OT)

Buffer Area α # of Cores Per Core α Msgs/Core

Practical Network Design

ng time

In-Network Snoop **Ordering (INSO)**

Timestamp Snooping (TS)

- T tokens for each block
- Periodic expiration

Each request tagged

of sha SCORPIO Minimum Area Requirement for Correctness: T = #

Area Number **Overhead** Cachelines 2 buffers at each endpoint

traffic with small expiration window

of Cores Duller Area Per Core Msgs/Core

Network Cost

Post-synthesis frequency: 1 GHz Post-layout frequency: 833 MHz

Network occupies only 10% of the area

Area

Network consumes 19% of the power

Power

Conclusion

SCORPIO Die

SCORPIO Packaged & Assembled

Intend to Run Linux OS and Applications on the Chip

Releasing SCORPIO NoC RTL after Measurements Completed

