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1. INTRODUCTION

Existing shared-memory multicore processors utilizing snoopy
coherence, explicitly require ordering of requests to maintain
memory consistency semantics. Unfortunately ordered inter-
connects scale poorly; The Achilles heel for buses lies in the
limited bandwidth, for rings it is the delay, and for crossbars it
is the area. Network-on- Chip (NoC) fabrics such as meshes
provide scalable bandwidth but doesn’t natively support snoopy
coherence protocols.

Although there is a plethora of research on low-power and
low-latency mesh routers, none identify a practical ordered
mesh network interconnect. Namely, few academic proposals
embed ordering support in NoCs [1,2], but are primarily evalu-
ated through simulations, prompting concerns over correctness
and practicality.

We present SCORPIO, a 36-core processor that is arranged
in a 2D mesh of 6 x6 tiles, as seen in Figure 1. Within each tile
is an in-order core, split L1 I/D caches, private L2 cache with
destination filtering, and network interface and router equipped
with global ordering support. Two Cadence DDR2 memory
controllers attach to four unique routers along the chip edge,
with the Cadence IP complying with the AMBA AXI interface,
interfacing with Cadence PHY to off-chip DIMM modules.

2. MEMORY HIERARCHY AND COHERENCE

The Freescale €200z760 core assumes a bus is connected to
the AMBA AHB data and instruction ports, cleanly isolating
the core from the details of the network and snoopy coherence
support. Between the network and the processor core IP is the
self-designed L2 cache with AMBA AHB processor-side and
AMBA ACE network-side interfaces.

Since the core IP doesn’t support hardware coherency, the
L1 and L2 caches are inclusive. With the L1 cache operating in
write-through mode, the L2 cache informs the L1 during invali-
dations and evictions of a line through the core’s invalidation
port. All L2 caches and the memory controllers receives all
requests. A 128 KB cache at each memory controller keeps
track of whether the cacheline owner is on-chip or not. The
memory controller responds to a request if the cacheline is
off-chip.

Although the ordered SCORPIO NoC can plug-and-play
with existing ACE controllers, we designed a MOSI protocol
along with two performance optimizations. To reduce the mem-
ory writeback frequency, the coherence protocol contains an
O_D state to permit sharing of dirty data. It differs from the
Modified state which indicates exclusive access to a dirty cache-
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Figure 1: SCORPIO Chip Layout and Tile Floorplan

line. Also, to reduce network backpressure, the request queue
is not stalled if a snoop request is waiting until updated data
arrives. Rather a list of source IDs is maintained such that sub-
sequent snoop request can proceed and when the data arrives,
it may be forwarded to all logged snoop request sources.

3. ON CHIP NETWORK

Traditionally, global message ordering on interconnects relies
on a centralized ordering point, which imposes greater indirec-
tion' and serialization latency® as the number of network nodes
increases. We eliminate the dependence on the centralized or-
dering point by decoupling message ordering from message
delivery using two physical networks:

Main network. The main network is an unordered net-
work and is responsible for broadcasting coherence requests to
all other nodes and delivering the responses to the requesting
nodes. Since the network is unordered, the broadcast coherence
requests from different source nodes may arrive at the network
interface controllers (NIC) of each node in any order. The
NICs are responsible for forwarding requests in global order to
the cache controller. Ordering maintained within the network
achieves sequential consistency, but different message classes
or virtual networks are used to avoid protocol deadlocks. The
Globally Ordered Request (GO-REQ) provides global ordering
and hardware broadcast support primarily for coherence and
msync requests. The Unordered Response (UO-RESP) sup-
ports data responses and msync ACKs. The separation of the
responses from the corresponding requests prevents protocol-

Network latency of a message from the source node to ordering point.
ZLatency of a message waiting at the ordering point before it is ordered and
forwarded to other nodes.
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level deadlock.

Notification network. For every coherence request sent on
the main network, a notification message encoding the source
node’s ID (SID) is broadcast on the notification network to
notify all nodes that a coherence request from this source node
is in-flight and needs to be ordered. Essentially, it is a bit
vector where each bit corresponds to a request from a source
node, so broadcasts can be merged by OR-ing the bit vectors
in a contention-less manner. The notification network thus has
a fixed maximum network latency bound. Accordingly, we
maintain synchronized time windows, greater than the latency
bound, at each node in the system. We synchronize and send
notification messages only at the beginning of each time win-
dow, thus guaranteeing that all nodes received the same set
of notification messages at the end of that time window. By
processing the received notification messages in accordance
with a consistent ordering rule, all network interface controllers
(NIC) determine locally the global order for the actual coher-
ence requests in the main network. As a result, even though the
coherence requests can arrive at each NIC in any order, they
are serviced at all nodes in the same order.

4. ARCHITECTURE ANALYSIS

For full-system architectural simulations of SCORPIO, we use
the GEMS simulator [3] and the GARNET network model.
The SCORPIO and baseline architectural parameters are faith-
fully mimicked within the limits of the simulation environment.
SCORPIO is compared with two baseline directory protocols,
Limited-pointer directory (LPD) and HyperTransport (HT).

We evaluate LPD, HT, and SCORPIO with a distributed
directory cache to equalize this directory access latency and
specifically isolate the effects of indirection and storage over-
head. All architectures share the same coherence protocol and
run on the same NoC (minus the ordered virtual network and
notification network).

4.1. PERFORMANCE

Figure 2 shows the normalized full-system application runtime
for SPLASH-2 and PARSEC benchmarks simulated on GEMS.
On average, SCORPIO shows 24.1% better performance over
LPD and 12.9% over HT across all benchmarks. Diving in, we
realize that SCORPIO experiences average L2 service latency
of 78 cycles, which is lower than that of LPD (94 cycles) and
HT (91 cycles). When a request is served by other caches,
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(b) Served by other caches

SCORPIO’s average latency is 67 cycles, which is 19.4% and
18.3% lower than LPD and HT, respectively. Since we equal-
ize the directory cache size for all configurations, the LPD
caches fewer lines compared to SCORPIO and HT, leading to a
higher directory access latency which includes off-chip latency.
SCORPIO provides the most latency benefit for data transfers
from other caches on-chip by avoiding the indirection latency.

As for requests served by the directory, HT performs better
than LPD due to the lower directory cache miss rate. Also,
because the directory protocols need not forward the requests
to other caches and can directly serve received requests, the
ordering latency overhead makes the SCORPIO delivery la-
tency slightly higher than the HT protocol. Since the directory
only serves 10% of the requests, SCORPIO still shows 17%
and 14% improvement in average request delivery latency over
LPD and HT, respectively, leading to the overall runtime im-
provement.

4.2. POWER, AREA AND FREQUENCY

The overall aggregated power consumption of SCORPIO is
around 28.8 W. The power consumption of a core with L1
caches is around 62% of the tile power, whereas the L2 cache
consumes 18% and the NIC and router 19% of tile power. A
notification router costs only a few OR gates; as a result, it
consumes less than 1% of the tile power.

The dimension of the fabricated SCORPIO is 11 x 13 mm?.
Each memory controller and each memory interface controller
occupies around 5.7 mm? and 0.5 mm? respectively. Within a
tile, L1 and L2 caches are the major area contributors, tak-
ing 46% of the tile area and the network interface controller
together with router occupying 10% of the tile area.

SCORPIO was implemented using ARM standard cells, and
achieves a post-synthesis frequency of 1 GHz (833 MHz post-
layout).
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